Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
J Mol Graph Model ; 129: 108756, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38479236

RESUMO

Formaldehyde is a VOC gas that plays a key role in air pollution. To limit emissions into the environment, the utilization of this waste as a raw material is a promising way. In this work, the M06-L functional calculation was used to investigate the structure, electronic properties, and catalytic activity of group IIA metals (Be, Mg, and Ca) partial substitution on Cu-BTC paddlewheels for formaldehyde encapsulation and carbonyl-ene reaction with propylene. Formaldehyde is absorbed by the metal center of the paddlewheel via its oxygen atom. The adsorption of formaldehyde on the substituted metal sites increased as compared to the parent Cu-BTC which can facilitate formaldehyde to react with propylene. The adsorption free energies are predicted to be -15.1 (Be-Cu-BTC), -14.7 (Mg-Cu-BTC), and -14.5 (Ca-Cu-BTC) kcal mol-1, respectively. The substituted metal has a slight effect on the Lewis acidity of the Cu ion in the paddlewheel. The adsorption free energy of formaldehyde, similar to that found in the pristine Cu-BTC, is observed. For the carbonyl-ene reaction, the reaction is proposed via a single step involving the C-C bond formation between two reactants and one hydrogen of propylene methyl group moves to formaldehyde oxygen, simultaneously. It was found that the substituted metals do not affect the catalytic performance of the Cu center for this reaction. The activation energies for the reaction at the Cu center are in the range of 22.0-23.4 kcal mol-1, which are slightly different from Cu-BTC (21.5 kcal mol-1). Interestingly, the catalytic activity of this reaction on the substituted metal is greater than that on the Cu center. The catalytic activities are in the order Be-Cu-BTC (13.3 kcal mol-1) > Mg-Cu-BTC (15.9 kcal mol-1) > Ca-Cu-BTC (17.8 kcal mol-1). Among them, the Be site of the bimetallic Be-Cu-BTC paddlewheel is predicted as a promising candidate catalyst.


Assuntos
Formaldeído , Metais , Formaldeído/química , Alcenos/química , Oxigênio
2.
J Chem Ecol ; 50(3-4): 129-142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195852

RESUMO

Biogenic volatile organic compounds (bVOCs), synthesised by plants, are important mediators of ecological interactions that can also undergo a series of reactions in the atmosphere. Ground-level ozone is a secondary pollutant generated through sunlight-driven reactions between nitrogen oxides (NOx) and VOCs. Its levels have increased since the industrial revolution and reactions involving ozone drive many chemical processes in the troposphere. While ozone precursors often originate in urban areas, winds may carry these hundreds of kilometres, causing ozone formation to also occur in less populated rural regions. Under elevated ozone conditions, ozonolysis of bVOCs can result in quantitative and qualitative changes in the gas phase, reducing the concentrations of certain bVOCs and resulting in the formation of other compounds. Such changes can result in disruption of bVOC-mediated behavioural or ecological interactions. Through a series of gas-phase experiments using Gas Chromatography Mass Spectrometry (GC-MS) and Proton Transfer Reaction Mass Spectrometry (PTR-MS), we investigated the products and their yields from the ozonolysis of a range of ubiquitous bVOCs, which were selected because of their importance in mediating ecological interactions such as pollinator and natural enemy attraction and plant-to-plant communication, namely: (E)-ß-ocimene, isomers of α and ß-farnesene, α-terpinene and 6-methyl-5-hepten-2-one. New products from the ozonolysis of these compounds were identified, and the formation of these compounds is consistent with terpene-ozone oxidation mechanisms. We present the degradation mechanism of our model bVOCs and identify their reaction products. We discuss the potential ecological implications of the degradation of each bVOC and of the formation of reaction products.


Assuntos
Monoterpenos Acíclicos , Alcenos , Cetonas , Ozônio , Sesquiterpenos , Compostos Orgânicos Voláteis , Ozônio/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Alcenos/química , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Atmosfera/química , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos Cicloexânicos/química , Cromatografia Gasosa-Espectrometria de Massas , Isomerismo , Poluentes Atmosféricos/química , Poluentes Atmosféricos/análise
3.
Nat Commun ; 14(1): 7439, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978196

RESUMO

γ-Amino acids and peptides analogues are common constituents of building blocks for numerous biologically active molecules, pharmaceuticals, and natural products. In particular, γ-amino acids are providing with better metabolic stability than α-amino acids. Herein we report a multicomponent carbonylation technology that combines readily available amides, alkenes, and the feedstock gas carbon monoxide to build architecturally complex and functionally diverse γ-amino acid derivatives in a single step by the implementation of radical relay catalysis. This transformation can also be used as a late-stage functionalization strategy to deliver complex, advanced γ-amino acid products for pharmaceutical and other areas.


Assuntos
Alcenos , Cobalto , Alcenos/química , Peptídeos/química , Aminoácidos/química , Aminas/química , Catálise , Preparações Farmacêuticas
4.
J Mol Graph Model ; 123: 108515, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220699

RESUMO

1,4-Diazepine as an active drug component underlies the potency of most psychotic, anticancer, anticonvulsant, and antibacterial drugs in the market and is, therefore crucial in chemotherapeutic treatment in biomedicine. Proper functionalization of this moiety can afford even more potent drugs. As a result of their therapeutic significance, this study aims at precisely giving a comprehensive computational insight into the unexpected initial reactivity of 1,4-diazepine derivatives and mesitonitrile oxide. The initial reaction between mesitonitrile oxide and 1,4-diazepine derivatives proceeds via a (3 + 2) cycloaddition reaction which leads to the formation of a cycloadduct where the mesitonitrile oxide unexpectedly adds across the imine functionality at the expense of the potential olefinic carbon-carbon double bond. Calculations at the density functional theory (DFT) M06/6-311G (d, p) level of theory indicate that the initial (3 + 2) cycloaddition reaction of mesitonitrile oxide (1,3-dipole) and 1,4-diazepine derivatives (dipolarophile) in all cases proceeds to form the cycloadduct where the 1,3-dipole adds preferentially to the imine functionality at the expense of the potential olefinic carbon-carbon double bond. In light of the parent reaction, the most kinetically favored cycloadductP3A had a rate constant of 5.1 × 106 M-1s-1, which is about 12 manifolds faster than the next competing stereoisomer P1A with a rate constant of 4.1 × 105 M-1s-1 and about 1024 faster than the most favored cycloadduct P3B with a rate constant of 7.2 × 10-19 M-1s-1 in the unfavored pathway (Path B). Irrespective of the electronic and steric nature of the electron-donating (EDG) and electron-withdrawing (EWG) substituents placed on the dipolarophile, the selectivities of the reaction were maintained. Rationalization of the potential energy surface depicts that the 1,3-dipole adds across the dipolarophile via an asynchronous concerted mechanism. Rationalization of the HOMO-LUMO energies of the mesitonitrile oxide (1,3-dipole) and the 1,4-diazepine derivatives (dipolarophile) depict that the EDG-substituted dipolarophile react as nucleophiles, whereas the dipole reacts as an electrophile. Conversely, the HOMO-LUMO interaction between the EWG-substituted dipolarophile indicates that the EWG-substituted dipolarophile react as electrophiles, whereas the dipole reacts as a nucleophile. The electrophilic parr function at various reactive sites of the dipolarophile shows that the 1,3-dipole preferentially adds across the local centers with the largest electrophilic NBO or Mulliken spin densities which is consistent with the energetic trend observed. The reactivity of the 1,4-diazepine derivatives and the mesitonitrile oxide showed poor stereoselectivity.


Assuntos
Elétrons , Óxidos , Reação de Cicloadição , Estereoisomerismo , Alcenos/química , Iminas
5.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838946

RESUMO

Carbonyl olefinations are among the most important organic syntheses that form C=C bonds, as they usually have high yields and in addition offer excellent stereoselectivity. Due to these advantages, carbonyl olefinations have important pharmaceutical and industrial applications. These reactions contain an additional step of an α-functionalized carbanion to an aldehyde or ketone to produce alkenes, but syntheses performed using metal carbene complexes are also known. The Wittig reaction is an example of carbonyl olefination, one of the best ways to synthesize alkenes. This involves the chemical reaction between an aldehyde or ketone with a so-called Wittig reagent, for instance phosphonium ylide. Triphenylphosphine-derived ylides and trialkylphosphine-derived ylides are the most common phosphorous compounds used as Wittig reagents. The Wittig reaction is commonly involved in the synthesis of novel anti-cancer and anti-viral compounds. In recent decades, the use of ultrasound on the Wittig reaction (and on different modified Wittig syntheses, such as the Wittig-Horner reaction or the aza-Wittig method) has been studied as a green synthesis. In addition to the advantage of green synthesis, the use of ultrasounds in general also improved the yield and reduced the reaction time. All of these chemical syntheses conducted under ultrasound will be described further in the present review.


Assuntos
Alcenos , Sonicação , Estrutura Molecular , Alcenos/química , Aldeídos
6.
J Am Chem Soc ; 145(8): 4389-4393, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795537

RESUMO

The nature of reactive intermediates and the mechanism of the cis-dihydroxylation of arenes and olefins by Rieske dioxygenases and synthetic nonheme iron catalysts have been the topic of intense research over the past several decades. In this study, we report that a spectroscopically well characterized mononuclear nonheme iron(III)-peroxo complex reacts with olefins and naphthalene derivatives, yielding iron(III) cycloadducts that are isolated and characterized structurally and spectroscopically. Kinetics and product analysis reveal that the nonheme iron(III)-peroxo complex is a nucleophile that reacts with olefins and naphthalenes to yield cis-diol products. The present study reports the first example of the cis-dihydroxylation of substrates by a nonheme iron(III)-peroxo complex that yields cis-diol products.


Assuntos
Dioxigenases , Ferro/química , Catálise , Alcenos/química
7.
Bioorg Chem ; 132: 106359, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642019

RESUMO

The inverse electron demand Diels-Alder (iEDDA) reaction between a tetrazine and a strained alkene has been widely explored as useful bioorthogonal chemistry for selective labeling of biomolecules. In this work, we exploit the slow reaction between a non-conjugated terminal alkene and a tetrazine, and apply this reaction to achieving a proximity-enhanced protein crosslinking. In one protein subunit, a terminal alkene-containing amino acid was site-specifically incorporated in response to an amber nonsense codon. In another protein subunit, a tetrazine moiety was introduced through the attachment to a cysteine residue. Fast protein crosslinking was achieved due to a large increase in effective molarity of the two reactants that were brought to close proximity by the two interacting protein subunits. Such a proximity-enhanced protein crosslinking is useful for the study of protein-protein interactions.


Assuntos
Alcenos , Compostos Heterocíclicos , Alcenos/química , Subunidades Proteicas , Aminoácidos/química , Reação de Cicloadição
8.
Angew Chem Int Ed Engl ; 62(4): e202215703, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36428246

RESUMO

Catalytic, three-component, cross-electrophile reactions have recently emerged as a promising tool for molecular diversification, but studies have focused mainly on the alkyl-carbonations of alkenes. Herein, the scope of this method has been extended to conjugated dienes and silicon chemistry through silylative difunctionalization of 1,3-dienes with chlorosilanes and aryl bromides. The reaction proceeds under mild conditions to afford 1,2-linear-silylated products, a selectivity that is different to those obtained from conventional methods via an intermediary of H(C)-η3 -π-allylmetal species. Preliminary mechanistic studies reveal that chlorosilane reacts with 1,3-diene first and then couples with aryl bromide.


Assuntos
Brometos , Níquel , Níquel/química , Alcenos/química , Polienos , Catálise
9.
Nat Commun ; 13(1): 7880, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564406

RESUMO

Given the widespread significance of vicinal diamine units in organic synthesis, pharmaceuticals and functional materials, as well as in privileged molecular catalysts, an efficient and practical strategy that avoids the use of stoichiometric strong oxidants is highly desirable. We herein report the application of ligand-to-metal charge transfer (LMCT) excitation to 1,2-diazidation reactions from alkenes and TMSN3 via a coordination-LMCT-homolysis process with more abundant and greener iron salt as the catalyst. Such a LMCT-homolysis mode allows the generation of electrophilic azidyl radical intermediate from Fe-N3 complexes poised for subsequent radical addition into carbon-carbon double bond. The generated carbon radical intermediate is further captured by iron-mediated azidyl radical transfer, enabling dual carbon-nitrogen bond formation. This protocol provides a versatile platform to access structurally diverse diazides with high functional group compatibility from readily available alkenes without the need of chemical oxidants.


Assuntos
Alcenos , Ferro , Ferro/química , Alcenos/química , Ligantes , Oxidantes , Catálise , Carbono
10.
Chem Commun (Camb) ; 58(100): 13915-13918, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36445240

RESUMO

Herein we reported the use of Earth-abundant iron as the catalytic metal in the presence of Mn to induce difluorobromoacetates to form carbon radicals, which reacted with trifluoromethyl olefins followed by ß-F elimination to generate the corresponding gem-difluoroolefins. The cross-electrophile coupling displayed excellent functional group tolerance and broad substrate scope under mild reductive conditions, affording a large number of polyfluorinated compounds, which could be further transformed to other valuable molecules.


Assuntos
Alcenos , Ferro , Catálise , Alcenos/química , Ferro/química , Carbono/química
11.
Nat Commun ; 13(1): 6861, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369422

RESUMO

Enantioenriched N-alkylindole compounds, in which nitrogen is bound to a stereogenic sp3 carbon, are an important entity of target molecules in the fields of biological, medicinal, and organic chemistry. Despite considerable efforts aimed at inventing methods for stereoselective indole functionalization, straightforward access to a diverse range of chiral N-alkylindoles in an intermolecular catalytic fashion from readily available indole substrates remains an ongoing challenge. In sharp contrast to existing C-N bond-forming strategies, here, we describe a modular nickel-catalyzed C-C coupling protocol that couples a broad array of N-indolyl-substituted alkenes with aryl/alkenyl/alkynyl bromides to produce chiral N-alkylindole adducts in single regioisomeric form, in up to 91% yield and 97% ee. The process is amenable to proceed under mild conditions and exhibit broad scope and high functional group compatibility. Utility is highlighted through late-stage functionalization of natural products and drug molecules, preparation of chiral building blocks.


Assuntos
Alcenos , Níquel , Níquel/química , Estereoisomerismo , Catálise , Alcenos/química , Indóis
12.
Org Lett ; 24(43): 8057-8061, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36286580

RESUMO

A series of novel trifluoromethylative thiolations of alkene are realized by using visible light as a driving force and iron salts as a catalyst, and 1,2-bis(trifluoromethylated) compounds could be obtained in moderate to good yields. These multicomponent protocols proceed in an atom-economical way with a broad substrate scope. Biologically active chemicals can also be tolerated to provide desired products, suggesting that the catalytic protocol could be viable for late-stage modification in pharmaceutical discovery. At last, flow-setup synthesis of the desired product is successfully applied on a gram scale, indicating the synthetic power of these reactions in industrial applications.


Assuntos
Alcenos , Ferro , Alcenos/química , Catálise , Luz
13.
J Am Chem Soc ; 144(41): 18817-18822, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194199

RESUMO

The nickel catalyzed reductive coupling of aldehydes with sorbate esters and related electron-deficient 1,3-dienes are known in the literature to occur at the π-bond proximal to the ester to afford aldol-type products. In stark contrast to this established path, a VAPOL-derived phosphoramidite ligand in combination with a bench-stable nickel precatalyst brokers a regiocomplementary course in that C-C bond formation proceeds exclusively at the distal alkene site to give deoxypropionate type products carrying an acrylate handle; they can be made in either anti- or syn-configured form. In addition to this enabling reverse pathway, the reaction is distinguished by excellent levels of chemo-, diastereo-, and enantioselectivity; moreover, it can be extended to the catalytic formation of F3C-substituted stereogenic centers. The use of a dienyl pinacolboronate instead of a sorbate ester is also possible, which opens access to valuable chiral borylated building blocks in optically active form.


Assuntos
Elétrons , Níquel , Níquel/química , Estereoisomerismo , Ligantes , Aldeídos/química , Catálise , Alcenos/química , Ésteres , Polienos , Acrilatos
14.
J Am Chem Soc ; 144(39): 17776-17782, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36136777

RESUMO

A mild and site-selective hydroaminoalkylation of activated and unactivated alkenes via dual photoredox/Ni catalysis is developed. This dual catalytic strategy enables exclusive access to α-selective products, which is complementary to previously reported photocatalytic hydroaminoalkylation of activated alkenes that provides the ß-selective products. The chain-walking of a Ni-H intermediate toward a carbonyl allows for the hydroaminoalkylation of unactivated alkenes at remote sp3 C-H sites. This method tolerates a broad substrate scope of both amines and alkenes as well as providing a streamlined synthesis of value-added ß-amino acid derivatives from readily available starting materials.


Assuntos
Alcenos , Níquel , Alcenos/química , Aminas/química , Aminoácidos , Catálise , Níquel/química
15.
Carbohydr Res ; 521: 108671, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113243

RESUMO

The THF containing acetogenin 4-deoxyannonmontacin (4-DAN) has attracted interest for its potent cytotoxicity against a broad range of human tumor cell lines, and relatively simple structure. Herein is described the synthesis and cytotoxicity of C-10 epimers of 4-DAN and analogues thereof comprising carbohydrate and thiophene substitutes for the THF and butenolide moieties respectively. The key synthetic ploy was the union of THF and butenolide segments or their substitutes, via an alkene cross metathesis. The different analogues showed cytotoxicity in the low micromolar to nanomolar range against the human prostate cancer cell lines LNCaP and PC3. A relatively simple mannose-linked thiophene analog was found to be similar in activity to 4-DAN.


Assuntos
Antineoplásicos , Neoplasias da Próstata , 4-Butirolactona/análogos & derivados , Acetogeninas/farmacologia , Alcenos/química , Antineoplásicos/química , Carboidratos , Linhagem Celular Tumoral , Humanos , Masculino , Manose , Neoplasias da Próstata/tratamento farmacológico , Tiofenos , Tricotecenos
16.
Dalton Trans ; 51(36): 13591-13595, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36039702

RESUMO

The first macrocyclic and abnormally coordinating, mesoionic N-heterocyclic carbene iron complex has been synthesised and characterised via ESI-MS, EA, SC-XRD, CV, NMR and UV/Vis spectroscopy. 13C-NMR spectroscopy and CV measurements indicate a strong σ-donor ability of the carbene moieties, suggesting an efficient catalytic activity of the iron complex in oxidation reactions. Initial tests in the epoxidation of cis-cyclooctene as a model substrate confirm this assumption.


Assuntos
Alcenos , Ferro , Alcenos/química , Catálise , Ciclo-Octanos , Ferro/química , Metano/análogos & derivados , Triazóis
17.
J Phys Chem A ; 126(32): 5398-5406, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35925795

RESUMO

Emerging contaminants are of concern due to their rapidly increasing numbers and potential ecological and human health effects. In this study, the synergistic effects of the presence of multifunctional nitro, amino and carbon-carbon double bond (C═C) groups on the gas phase ozonolysis in O2 or at the air/solid interface were investigated using five simple model compounds. The gas phase ozonolysis rate constants at 296 K were (3.5 ± 0.9) × 10-20 cm3 molecule-1 s-1 for 2-methyl-1-nitroprop-1-ene and (6.8 ± 0.8) × 10-19 cm3 molecule-1 s-1 for 4-methyl-4-nitro-1-pentene, with lifetimes of 134 and 7 days in the presence of 100 ppb ozone in the atmosphere, respectively. The rate constants for gas phase E-N,N-dimethyl-1-propenylamine and N,N-dimethylallylamine reactions with ozone were too fast (>10-18 cm3 molecule-1 s-1) to be measured, implying lifetimes of less than 5 days. A multiphase kinetics model (KM-GAP) was used to probe the gas-solid kinetics of 1-dimethylamino-2-nitroethylene, yielding a rate constant for the surface reaction of 1.8 × 10-9 cm2 molecule-1 s-1 and in the bulk 1× 10-16 cm3 molecule-1 s-1. These results show that a nitro group attached to the C═C lowers the gas phase rate constant by 2-3 orders of magnitude compared to the simple alkenes, while amino groups have the opposite effect. The presence of both groups provides counterbalancing effects. Products with deleterious health effects including dimethylformamide and formaldehyde were identified by FTIR. The identified products differentiate whether the initial site of ozone attack is C═C and/or the amino group. This study provides a basis for predicting the environmental fates of emerging contaminants and shows that both the toxicity of both the parent compounds and the products should be taken into account in assessing their environmental impacts.


Assuntos
Alcenos , Ozônio , Alcenos/química , Carbono , Humanos , Cinética , Nitrogênio , Ozônio/química
18.
J Am Chem Soc ; 144(35): 15954-15968, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35998887

RESUMO

The aerobic oxidation of alkenes to carbonyls is an important and challenging transformation in synthesis. Recently, a new P450-based enzyme (aMOx) has been evolved in the laboratory to directly oxidize styrenes to their corresponding aldehydes with high activity and selectivity. The enzyme utilizes a heme-based, high-valent iron-oxo species as a catalytic oxidant that normally epoxidizes alkenes, similar to other catalysts. How the evolved aMOx enzyme suppresses the commonly preferred epoxidation and catalyzes direct carbonyl formation is currently not well understood. Here, we combine computational modelling together with mechanistic experiments to study the reaction mechanism and unravel the molecular basis behind the selectivity achieved by aMOx. Our results describe that although both pathways are energetically accessible diverging from a common covalent radical intermediate, intrinsic dynamic effects determine the strong preference for epoxidation. We discovered that aMOx overrides these intrinsic preferences by controlling the accessible conformations of the covalent radical intermediate. This disfavors epoxidation and facilitates the formation of a carbocation intermediate that generates the aldehyde product through a fast 1,2-hydride migration. Electrostatic preorganization of the enzyme active site also contributes to the stabilization of the carbocation intermediate. Computations predicted that the hydride migration is stereoselective due to the enzymatic conformational control over the intermediate species. These predictions were corroborated by experiments using deuterated styrene substrates, which proved that the hydride migration is cis- and enantioselective. Our results demonstrate that directed evolution tailored a highly specific active site that imposes strong steric control over key fleeting biocatalytic intermediates, which is essential for accessing the carbonyl forming pathway and preventing competing epoxidation.


Assuntos
Alcenos , Ferro , Alcenos/química , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Ferro/química , Oxirredução
19.
Chem Asian J ; 17(18): e202200650, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35909083

RESUMO

A reductive SN 2' reaction of epoxydienoates and epoxyenoates with borane was developed to afford skipped dienoates and unconjugated enoates with trisubstituted Z-alkene linked to asymmetric centers on one side or both sides. This reaction was successfully applied to the alternative synthesis of an antitumor active artificial analogue of torrubiellutin C. A geometric isomer for α,ß-unsaturated amide of the artificial analogue was also synthesized. These syntheses clarified the true structure of the antitumor active artificial analogue of torrubiellutin C.


Assuntos
Boranos , Alcenos/química , Catálise , Lactamas Macrocíclicas , Estrutura Molecular , Fenilalanina/análogos & derivados
20.
Angew Chem Int Ed Engl ; 61(36): e202207536, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35818326

RESUMO

Herein, we leverage the Ni-catalyzed enantioselective reductive dicarbofunctionalization of internal alkenes with alkyl iodides to enable the synthesis of chiral pyrrolidinones bearing vicinal stereogenic centers. The application of newly developed 1-Nap Quinim is critical for formation of two contiguous stereocenters in high yield, enantioselectivity, and diastereoselectivity. This catalytic system also improves both the yield and enantioselectivity in the synthesis of α,α-dialkylated γ-lactams. Computational studies reveal that the enantiodetermining step proceeds with a carbamoyl-NiI intermediate that is reduced by the Mn reductant prior to intramolecular migratory insertion. The presence of the t-butyl group of the Quinim ligand leads to an unfavorable distortion of the substrate in the TS that leads to the minor enantiomer. Calculations also support an improvement in enantioselectivity with 1-Nap Quinim compared to p-tol Quinim.


Assuntos
Alcenos , Níquel , Alcenos/química , Catálise , Estrutura Molecular , Níquel/química , Carbamilação de Proteínas , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA